Chapter 1

The Worlds of Database
Systems

Databases today are essential to every business. They are used to maintain
internal records, to present data to customers and clients on the World-Wide-
Web, and to support many other commercial processes. Databases are likewise
found at the core of many scientific investigations. They represent the data
gathered by astronomers, by investigators of the human genome, and by bio-
chemists exploring the medicinal properties of proteins, along with many other
scientists.

The power of databases comes from a body of knowledge and technology
that has developed over several decades and is embodied in specialized soft-
ware called a database management system, or DBMS, or more colloquially a
“database system.” A DBMS is a powerful tool for cre
amounts of data efficiently and allowing it to persist over long periods of time,

safely. These systems are among the most complex types of software available.
The capabilities that a DBMS provides the user are:

ating and managing large

1. Persistent storage. Like a file system, a DBMS supports the storage of
very large amounts of data that exists independently of any processes that
are using the data. However, the DBMS goes far beyond the file system in
providing flexibility, such as data, structures that support efficient access
to very large amounts of data.

2. Programming interface. A DBMS allows the user or an application pro-
gram to access and modify data through a powerful query language.
Again, the advantage of a DBMS over a file system is the flexibility to

manipulate stored data in much more complex ways than the reading and
writing of files.

3. Transaction management. A DBMS supports concurrent access to data,
i.e., simultaneous access by many distinct processes (called “transac-

1

sisAjpuy puv JudaSvUvIN DIV UOHDILOASUDL], 66S/ZTH D

[-€ 49pvay

2 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

tions”) at once. To avoid some of the undesirable consequences of si-
multaneous access, the DBMS supports isolation, the appearance that
transactions execute one-at-a-time, and atomicity, the requirement that
transactions execute either completely or not at all. A DBMS also sup-
ports durability, the ability to recover from failures or errors of many
types.

1.1 The Evolution of Database Systems

What is a database? In essence a database is nothing more than a collection of
information that exists over a long period of time, often many years. In common
parlance, the term database refers to a collection of data that is managed by a
DBMS. The DBMS is expected to:

1. Allow users to create new databases and specify their schema (logical
structure of the data), using a specialized language called a data-definition
language.

2. Give users the ability to query the data (a “query” is database lingo for
a question about the data) and modify the data, using an appropriate
language, often called a query language or data-manipulation language.

3. Support the storage of very large amounts of data — many gigabytes or
more — over a long period of time, keeping it secure from accident or
unauthorized use and allowing efficient access to the data for queries and
database modifications.

4. Control access to data from many users at once, without allowing the
actions of one user to affect other users and without allowing simultaneous
accesses to corrupt the data accidentally.

1.1.1 Early Database Management Systems

The first commercial database management systems appeared in the late 1960’s.
These systems evolved from file systems, which provide some of item (3) above;
file systems store data over a long period of time, and they allow the storage of
large amounts of data. However, file systems do not generally guarantee that
data cannot be lost if it is not backed up, and they don’t support efficient access
to data items whose location in a particular file is not known.

Further, file systems do not directly support item (2), a query language for
the data in files. Their support for (1) — a schema for the data — is limited to
the creation of directory structures for files. Finally, file systems do not satisfy
(4). When they allow concurrent access to files by several users or processes,
a file system generally will not prevent situations such as two users modifying
the same file at about the same time, so the changes made by one user fail to
appear in the file.)

1.1. THE EVOLUTION OF DATABASE SYSTEMS 3

The first important applications of DBMS’s were ones where data was com-
posed of many small items, and many queries or modifications were made. Here
are some of these applications.

Airline Reservations Systems

In this type of system, the items of data include:

1. Reservations by a single customer on a single flight, including such infor-
mation as assigned seat or meal preference.

2. Information about flights — the airports they fly from and to, their de-
parture and arrival times, or the aircraft flown, for example.

3. Information about ticket prices, requirements, and availability.

Typical queries ask for flights leaving around a certain time from one given
city to another, what seats are available, and at what prices. Typical data
modifications include the booking of a flight for a customer, assigning a seat, or
indicating a meal preference. Many agents will be accessing parts of the data
at any given time. The DBMS must allow such concurrent accesses, prevent
problems such as two agents assigning the same seat simultaneously, and protect
against loss of records if the system suddenly fails.

Banking Systems

Data items include names and addresses of customers, accounts, loans, and their
balances, and the connection between customers and their accounts and loans,
e.g., who has signature authority over which accounts. Queries for account
balances are common, but far more common are modifications representing a
single payment from, or deposit to, an account.

As with the airline reservation system, we expect that many tellers and
customers (through ATM machines or the Web) will be querying and modifying
the bank’s data at once. It is vital that simultaneous accesses to an account not
cause the effect of a transaction to be lost. Failures cannot be tolerated. For
example, once the money has been ejected from an ATM machine, the bank
must record the debit, even if the power immediately fails. On the other hand,
it is not permissible for the bank to record the debit and then not deliver the
money if the power fails. The proper way to handle this operation is far from
obvious and can be regarded as one of the significant achievements in DBMS
architecture.

Corporate Records

Many early applications concerned corporate records, such as a record of each
sale, information about accounts payable and receivable, or information about
employees — their names, addresses, salary, benefit options, tax status, and

Z-€ 12pvay

sisAppuy puv JuawaSvuvy viv uoyviiodsuvi] 66S/Z1H 40

4 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

so on. Queries include the printing of reports such as accounts receivable or
employees’ weekly paychecks. Each sale, purchase, bill, receipt, employee hired,
fired, or promoted, and so on, results in a modification to the database.

The early DBMS’s, evolving from file systems, encouraged the user to visu-
alize data much as it was stored. These database systems used several different
data models for describing the structure of the information in a database, chief
among them the “hierarchical” or tree-based model and the graph-based “net-
work” model. The latter was standardized in the late 1960’s through a report
of CODASYL (Committee on Data Systems and Languages).!

A problem with these early models and systems was that they did not sup-
port high-level query languages. For example, the CODASYL query language
had statements that allowed the user to jump from data element to data ele-
ment, through a graph of pointers among these elements. There was consider-
able effort needed to write such programs, even for very simple queries.

1.1.2° Relational Database Systems

Following a famous paper written by Ted Codd in 1970,2 database systems
changed significantly. Codd proposed that database systems should present
the user with a view of data organized as tables called relations. Behind the
scenes, there might be a complex data structure that allowed rapid response to

a variety of queries. But, unlike the user of earlier database systems, the user of

a relational system would not be concerned with the storage structure. Queries
could be expressed in a very high-level language, which greatly increased the
efficiency of database programmers.

We shall cover the relational model of database systems throughout most
of this book, starting with the basic relational concepts in Chapter 3. SQL
(“Structured Query Language”), the most important query language based on
the relational model, will be covered starting in Chapter 6. However, a brief
introduction to relations will give the reader a hint of the simplicity of the
model, and an SQL sample will suggest how the relational model promotes
queries written at a very high level, avoiding details of “navigation” through
the database.

Example 1.1: Relations are tables. Their columns are headed by attributes,
which describe the entries in the column. For instance, a relation named
Accounts, recording bank accounts, their balance, and type might look like:

accountNo | balance | type

12345 1000.00 | savings
67890 2846.92 | checking

1CODASYL Data Base Task Group April 1971 Report, ACM, New York.

2Codd, E. F., “A relational model for large shared data banks,” Comm. ACM, 13:6,
pp. 377-387, 1970.

1.1. THE EVOLUTION OF DATABASE SYSTEMS 5

Heading the columns are the three attributes: accountNo, balance, and type.
Below the attributes are the rows, or tuples. Here we show two tuples of the
relation explicitly, and the dots below them suggest that there would be many
more tuples, one for each account at the bank. The first tuple says that account

number 12345 has a balance of one thousand dollars, and it is a savings account.

The second tuple says that account 67890 is a checking account with $2846.92.
Suppose we wanted to know the balance of account 67890. We could ask
this query in SQL as follows: ’

SELECT balance
FROM Accounts
WHERE accountNo = 67890;

For another example, we could ask for the savings accounts with negative bal- |

ances by: ;
SELECT accountNo

FROM Accounts
WHERE type = ’savings’ AND balance < 0;

We do not expect that these two examples are enough to make the reader an |

expert SQL programmer, but they should convey the high-level nature of the
SQL “select-from-where” statement. In principle, they ask the DBMS to

1. Examine all the tuples of the relation Accounts mentioned in the FROM |

clause,

2. Pick out those tuples that satisfy some criterion indicated in the WHERE
clause, and ‘

3. Produce as an answer certain attributes of those tuples, as indicated in
the SELECT clause. :

In practice, the system must “optimize” the query and find an efficient way to

answer the query, even though the relations involved in the query may be very !

large. O

By 1990, relational database systems were the norm. Yet the database field
continues to evolve, and new issues and approaches to the management of data
surface regularly. In the balance of this section, we shall consider some of the
modern trends in database systems. i

1.1.3 Smaller and Smaller Systems

Originally, DBMS’s were large, expensive software systems running on large
computers. The size was necessary, because to store a gigabyte of data required
a large computer system. Today, many gigabytes fit on a single disk, and

sisAppuy puv JuawaSvuvy viv uoyviiodsuvi] 66S/Z1H 40

€-¢ 1opvay

|
|
|

6 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

it is quite feasible to run a DBMS on a personal computer. Thus, database
systems based on the relational model have become available for even 7very small
mac%lines, and they are beginning to appear as a common tool for computer
applications, much as spreadsheets and word processors did before them.

1.1.4 Bigger and Bigger Systems

On the other hand, a gigabyte isn’t much data. Corporate databases often
occupy hundreds of gigabytes. Further, as storage becomes cheaper people
find new reasons to store greater amounts of data. For example, retail chains
often store terabytes (a terabyte is 1000 gigabytes, or 102 bytes) of information
Tecordmg the history of every sale made over a long period of time (for planning
Inventory; we shall have more to say about this matter in Section 1.1.7).

] Further, databases no longer focus on storing simple data items such as
integers or short character strings. They can store images, audio, video, and
many other kinds of data that take comparatively huge amounts of space,. For
Instance, an hour of video consumes about, a gigabyte. Databases storing images
from satellites can involve petabytes (1000 terabytes, or 1015 bytes) of data.

Handling such large databases required several technological advances. For

example, databases of modest size are today stored on arrays of disks which are
called secondary storage devices (compared to main memory, which is"‘primary”
storage). One could even argue that what distinguishes database systems from
other software is, more than anything else, the fact that database systems
roytinely assume data is too big to fit in main memory and must be located
primarily on disk at all times. The following two trends allow database systems
to deal with larger amounts of data, faster.

Tertiary Storage

The largest databases today require more than disks. Several kinds of tertiary
storage devices have been developed. Tertiary devices, perhaps storing a tera-
bytsa each, require much more time to access a given item than does a disk.
While typical disks can access any item in 10-20 milliseconds, a tertiary device
may take several seconds. Tertiary storage devices involve transporting an

. red data item is stored, to a reading device. This
movement is performed by a robotic conveyance of some sort.

For example, compact disks (CD’s) or digital versatile disks (DVD’s) may
be the storage medium in a tertiary device. An arm mounted on a track goes

to a particular disk, picks it up, carries it to a reader, and loads the disk into
the reader.

Parallel Computing

The: ability t:.o store enormous volumes of data is important, but it would be
of little use if we could not access large amounts of that data quickly. Thus
very large databases also require speed enhancers. One important speedup is

?

1.1. THE EVOLUTION OF DATABASE SYSTEMS 7

through index structures, which we shall mention in Section 1.2.2 and cover
extensively in Chapter 13. Another way to process more data in a given time
is to use parallelism. This parallelism manifests itself in various ways.

For example, since the rate at which data can be read from a given disk is
fairly low, a few megabytes per second, we can speed processing if we use many
disks and read them in parallel (even if the data originates on tertiary storage,
it is “cached” on disks before being accessed by the DBMS). These disks may
be part of an organized parallel machine, or they may be components of a
distributed system, in which many machines, each responsible for a part of the
database, communicate over a high-speed network when needed.

Of course, the ability to move data quickly, like the ability to store large
amounts of data, does not by itself guarantee that queries can be answered
quickly. We still need to use algorithms that break queries up in ways that
allow parallel computers or networks of distributed computers to make effective
use of all the resources. Thus, parallel and distributed management of very large
databases remains an active area of research and development; we consider some
of its important ideas in Section 15.9.

1.1.5 Client-Server and Multi-Tier Architectures

Many varieties of modern software use a client-server architecture, in which
requests by one process (the client) are sent to another process (the server) for
execution. Database systems are no exception, and it has become increasingly
common to divide the work of a DBMS into a server process and one or more
client processes.

In the simplest client-server architecture, the entire DBMS is a server, except
for the query interfaces that interact with the user and send queries or other
commands across to the server. For example, relational systems generally use
the SQL language for representing requests from the client to the server. The
database server then sends the answer, in the form of a table or relation, back
to the client. The relationship between client and server can get more complex,
especially when answers are extremely large. We shall have more to say about
this matter in Section 1.1.6.

There is also a trend to put more work in the client, since the server will
be a bottleneck if there are many simultaneous database users. In the recent
proliferation of system architectures in which databases are used to provide
dynamically-generated content for Web sites, the two-tier (client-server) archi-
tecture gives way to three (or even more) tiers. The DBMS continues to act
as a server, but its client is typically an application server, which manages
connections to the database, transactions, authorization, and other aspects.
Application servers in turn have clients such as Web servers, which support
end-users or other applications.

B-¢ 4opvay

sisAjpuy puv JuawaSvuvy vIvq UoyvLIodsuv.], 665/Z1% 4D

8 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

1.1.6 Multimedia Data

Another important trend in database systems is the inclusion of multimedia
data. By “multimedia” we mean information that represents a signal of some
sort. Common forms of multimedia data include video, audio, radar signals,
satellite images, and documents or pictures in various encodings. These forms

. have in common that they are much larger than the earlier forms of data —

integers, character strings of fixed length, and so on — and of vastly varying
sizes.

The storage of multimedia data has forced DBMS’s to expand in several
ways. For example, the operations that one performs on multimedia data are
not the simple ones suitable for traditional data forms. Thus, while one might
search a bank database for accounts that have a negative balance, comparing
each balance with the real number 0.0, it is not feasible to search a database of
pictures for those that show a face that “looks like” a particular image.

To allow users to create and use complex data operations such as image-
processing, DBMS’s have had to incorporate the ability of users to introduce
functions of their own choosing. Often, the object-oriented approach is used
for such extensions, even in relational systems, which are then dubbed “object-
relational.” We shall take up object-oriented database programming in various
places, including Chapters 4 and 9.

The size of multimedia objects also forces the DBMS to modify the storage
manager so that objects or tuples of a gigabyte or more can be accommodated.
Among the many problems that such large elements present is the delivery of
answers to queries. In a conventional, relational database, an answer is a set of
tuples. These tuples would be delivered to the client by the database server as
a whole.

However, suppose the answer to a query is a video clip a gigabyte long. It is
not feasible for the server to deliver the gigabyte to the client as a whole. For
one reason it takes too long and will prevent the server from handling other
requests. For another, the client may want only a small part of the film clip,
but doesn’t have a way to ask for exactly what it wants without seeing the
initial portion of the clip. For a third reason, even if the client wants the whole
clip, perhaps in order to play it on a screen, it is sufficient to deliver the clip at
a fixed rate over the course of an hour (the amount of time it takes to play a
gigabyte of compressed video). Thus, the storage system of a DBMS supporting
multimedia data has to be prepared to deliver answers in an interactive mode,
passing a piece of the answer to the client on request or at a fixed rate.

1.1.7 Information Integration

As information becomes ever more essential in our work and play, we find that
existing information resources are being used in many new ways. For instance,
consider a company that wants to provide on-line catalogs for all its products, so
that people can use the World Wide Web to browse its products and place on-

1.2. OVERVIEW OF A DATABASE MANAGEMENT SYSTEM 9

line orders. A large company has many divisions. Each division may have built
its own database of products independently of other divisions. These divisions
may use different DBMS’s, different structures for information, perhaps even
different terms to mean the same thing or the same term to mean different

things.

Example 1.2: Imagine a company with several divisions that manufacture
disks. One division’s catalog might represent rotation rate in revolutions per
second, another in revolutions per minute. Another might have neglected to
represent rotation speed at all. A division manufacturing floppy disks might
refer to them as “disks,” while a division manufacturing hard disks might call
them “disks” as well. The number of tracks on a disk might be referred to as
“tracks” in one division, but “cylinders” in another. O

Central control is not always the answer. Divisions may have invested large
amounts of money in their database long before information integration across
divisions was recognized as a problem. A division may have been an inde-
pendent company, recently acquired. For these or other reasons, these so-called
legacy databases cannot be replaced easily. Thus, the company must build some
structure on top of the legacy databases to present to customers a unified view
of products across the company.

One popular approach is the creation of data warehouses, where information
from many legacy databases is copied, with the appropriate translation, to a
central database. As the legacy databases change, the warehouse is updated,
but not necessarily instantaneously updated. A common scheme is for the
warehouse to be reconstructed each night, when the legacy databases are likely
to be less busy.

The legacy databases are thus able to continue serving the purposes for

which they were created. New functions, such as providing an on-line catalog
service through the Web, are done at the data warehouse. We also see data
warehouses serving needs for planning and analysis. For example, company an-
alysts may run queries against the warehouse looking for sales trends, in order
to better plan inventory and production. Data mining, the search for interest-
ing and unusual patterns in data, has also been enabled by the construction
of data warehouses, and there are claims of enhanced sales through exploita-
tion of patterns discovered in this way. These and other issues of information
integration are discussed in Chapter 20.

1.2 Overview of a Database Management
System

In Fig. 1.1 we see an outline of a complete DBMS. Single boxes represent system
components, while double boxes represent in-memory data structures. The solid
lines indicate control and data flow, while dashed lines indicate data flow only.

sisAjpuy puv JudaSvUvIN DIV UOHDILOASUDL], 66S/ZTH D

G-¢ 1opvay

10 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

Since the diagram is complicated, we shall consider the details in several stages.
First, at the top, we suggest that there are two distinct sources of commands
to the DBMS:

1. Conventional users and application programs that ask for data or modify
data.

2. A database administrator: a person or persons responsible for the struc-
ture or schema of the database. :

1.2.1 Data-Definition Language Commands

The second kind of command is the simpler to process, and we show its trail
beginning at the upper right side of Fig. 1.1. For example, the database ad-
ministrator, or DBA, for a university registrar’s database might decide that
there should be a table or relation with columns for a student, a course the
student has taken, and a grade for that student in that course. The DBA
might also decide that the only allowable grades are A, B, C, D, and F. This
structure and constraint information is all part of the schema of the database.
It is shown in Fig. 1.1 as entered by the DBA, who needs special authority
to execute schema-altering commands, since these can have profound effects
on the database. These schema-altering DDL commands (“DDL” stands for
“data-definition language”) are parsed by a DDL processor and passed to the
execution engine, which then goes through the index/file/record manager to
alter the metadata, that is, the schema information for the database.

1.2.2 Overview of Query Processing

The great majority of interactions with the DBMS follow the path on the left
side of Fig. 1.1. A user or an application program initiates some action that
does not affect the schema of the database, but may affect the content of the
database (if the action is a modification command) or will extract data from
the database (if the action is a query). Remember from Section 1.1 that the
language in which these commands are expressed is called a data-manipulation
language (DML) or somewhat colloquially a query language. There are many
data-manipulation languages available, but SQL, which was mentioned in Ex-
ample 1.1, is by far the most commonly used. DML statements are handled by
two separate subsystems, as follows.

Answering the query

The query is parsed and optimized by a query compiler. The resulting query
plan, or sequence of actions the DBMS will perform to answer the query, is
passed to the ezecution engine. The execution engine issues a sequence of
requests for small pieces of data, typically records or tuples of a relation, to a
resource manager that knows about data files (holding relations), the format

OVERVIEW OF A DATABASE MANAGEMENT SYSTEM 11
Database
User/application administrator
queries, transa;'(t)ian s DDL
updates mma commands
Query Transaction DDL
compiler manager compiler
\\metadata, : \\ metadata
auery \\ statistics \
plan / ‘
Y \
Execution Y Logging and Concurrency | |
engine \ recovery control '
. .) i
index, file, and \\ \ '
record requests Y ! '
\ ! i
S log! '
Index/file/rec Vo pages: Lock ;
ord manager Y H table)
\ \ 1 - 7
) dam, \ \ 1 //
page | metadaia,, O, ! .
col indexes > N\ 1 _-i-__ L
Buffer
manager Buffers
read/write
pages
Storage
manager
Storage
\—/

Figure 1.1: Database management system components

9-¢ LIpVIY

sisAjpuy puv JudaSvUvIN DIV UOHDILOASUDL], 66S/ZTH D

12 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

and size of records in those files, and indez files, which help find elements of
data files quickly.

The requests for data are translated into pages and these requests are passed
to the buffer manager. We shall discuss the role of the buffer manager in
Section 1.2.3, but briefly, its task is to bring appropriate portions of the data
from secondary storage (disk, normally) where it is kept permanently, to main-
memory buffers. Normally, the page or “disk block” is the unit of transfer
between buffers and disk.

The buffer manager communicates with a storage manager to get data from
disk. The storage manager might involve operating-system commands, but
more typically, the DBMS issues commands directly to the disk controller.

Transaction processing

Queries and other DML actions are grouped into transactions, which are units
that must be executed atomically and in isolation from one another. Often each
query or modification action is a transaction by itself. In addition, the execu-
tion of transactions must be durable, meaning that the effect of any completed
transaction must be preserved even if the system fails in some way right after
completion of the transaction. We divide the transaction processor into two
major parts:

1. A concurrency-control manager, or scheduler, responsible for assuring
atomicity and isolation of transactions, and

2. A logging and recovery manager, responsible for the durability of trans-
actions.

We shall consider these components further in Section 1.2.4.

1.2.3 Storage and Buffer Management

The data of a database normally resides in secondary storage; in today’s com-
puter systems “secondary storage” generally means magnetic disk. However, to
perform any useful operation on data, that data must be in main memory. It
is the job of the storage manager to control the placement of data on disk and
its movement between disk and main memory.

In a simple database system, the storage manager might be nothing more
than the file system of the underlying operating system.- However, for efficiency
purposes, DBMS’s normally control storage on the disk directly, at least under
some circumstances. The storage manager keeps track of the location of files on
the disk and obtains the block or blocks containing a file on request from the
buffer manager. Recall that disks are generally divided into disk blocks, which
are regions of contiguous storage containing a large number of bytes, perhaps
2'% or 2'* (about 4000 to 16,000 bytes).

The buffer manager is responsible for partitioning the available main mem-
ory into buffers, which are page-sized regions into which disk blocks can be

OVERVIEW OF A DATABASE MANAGEMENT SYSTEM 13

transferred. Thus, all DBMS components that need information from the disk
will interact with the buffers and the buffer manager, either directly or through
the execution engine. The kinds of information that various components may
need include:

1. Data: the contents of the database itself.

2. Metadata: the database schema that describes the structure of, and con-
straints on, the database.

3. Statistics: information gathered and stored by the DBMS about data
properties such as the sizes of, and values in, various relations or other
components of the database.

4. Indezes: data structures that support efficient access to the data.

A more complete discussion of the buffer manager and its role appears in Sec-
tion 15.7.

1.2.4 Transaction Processing

It is normal to group one or more database operations into a transaction, which
is a unit of work that must be executed atomically and in apparent isolation
from other transactions. In addition, a DBMS offers the guarantee of durability:
that the work of a completed transaction will never be lost. The transaction
manager therefore accepts transaction commands from an application, which
tell the transaction manager when transactions begin and end, as well as infor-
mation about the expectations of the application (some may not wish to require
atomicity, for example). The transaction processor performs the following tasks:

1. Logging: In order to assure durability, every change in the database is
logged separately on disk. The log manager follows one of several policies
designed to assure that no matter when a system failure or “crash” occurs,
a recovery manager will be able to examine the log of changes and restore
the database to some consistent state. The log manager initially writes
the log in buffers and negotiates with the buffer manager to make sure that
buffers are written to disk (where data can survive a crash) at appropriate
times.

2. Concurrency control: Transactions must appear to execute in isolation.
But in most systems, there will in truth be many transactions executing
at once. Thus, the scheduler (concurrency-control manager) must assure
that the individual actions of multiple transactions are executed in such
an order that the net effect is the same as if the transactions had in
fact executed in their entirety, one-at-a-time. A typical scheduler does
its work by maintaining locks on certain pieces of the database. These
locks prevent two transactions from accessing the same piece of data in

sisAjpuy puv JudaSvUvIN DIV UOHDILOASUDL], 66S/ZTH D

=~
S
)
QU
)
g
e
N

14 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS 1.3. OUTLINE OF DATABASE-SYSTEM STUDIES 15 =
S

. . “relational algebra” operations, which are discussed in Section 5.2. The 1)

The ACID Properties of Transactions query compiler consists of three major units: ,::

Properly implemented transactions are commonly said to meet, the “ACID *

test.” where: (a) A query parser, which builds a tree structure from the textual form
oSk, where: of the query.

e “A” stands for “atomicity,” the all-or-nothing execution of trans- (b) A query preprocessor, which performs semantic checks on the query
actions. (e-g., making sure all relations mentioned by the query actually ex-
ist), and performing some tree transformations to turn the parse tree

«y [{5 : .
® “I” stands for “isolation,” the fact that each transaction must appear into a tree of algebraic operators representing the initial query plan.

to be executed as if no other transaction is executing at the same e .
time. (c) A query eptimizer, which transforms the initial query plan into the
best available sequence of operations on the actual data.

¢ “D” stands for “durability,” the condition that the effect on the
database of a transaction must never be lost, once the transaction The query compiler uses metadata and statistics about the data to decide
has completed. which sequence of operations is likely to be the fastest. For example, the
existence of an indez, which is a specialized data structure that facilitates
access to data, given values for one or more components of that data, can
make one plan much faster than another.

The remaining letter, “C,” stands for “consistency.” That is, all databases
have consistency constraints, or expectations about relationships among
data elements (e.g., account balances may not be negative). Transactions

are expected to preserve the consistency of the database. We discuss the 2. The ezecution engine, which has the responsibility for executing each of
expression of consistency constraints in a database schema in Chapter 7, the steps in the chosen query plan. The execution engine interacts with
while Section 18.1 begins a discussion of how consistency is maintained by most of the other components of the DBMS, either directly or through
the DBMS.

the buffers. It must get the data from the database into buffers in order
to manipulate that data. It needs to interact with the scheduler to avoid
accessing data that is locked, and with the log manager to make sure that
ways that interact badly. Locks are generally stored in a main-memory all database changes are properly logged.

lock table, as suggested by Fig. 1.1. The scheduler affects the execution of
queries and other database operations by forbidding the execution engine
from accessing locked parts of the database.

1.3 Outline of Database-System Studies

3. Deadlock resolution: As transactions compete for resources through the

locks that the scheduler grants, they can get into a situation where none Ideas related to database systems can be divided into three broad categories:

| can proceed because each needs something another transaction has. The . ;
transaction manager has the responsibility to intervene and cancel (“roll- L De'szgn of d{ztabase.s. How does one develop i.lusefu.l databage? What kinds
back” or “abort”) one or more transactions to let the others proceed. of information go into the database? How is the information structured?

What assumptions are made about types or values of data items? How
do data items connect?

sisAjpuy puv JudaSvUvIN DIV UOHDILOASUDL], 66S/ZTH D

1.2.5 The Query Processor

2. Database programming. How does one express queries and other opera-

The portion of the DBMS that most affects the performance that the user sees tions on the database? How does one use other capabilities of a DBMS,
is the guery processor. Tn Fig. 1.1 the query processor is represented by two such as transactions or constraints, in an application? How is database
components:

programming combined with conventional programming?

- Database system implementation. How does one build a DBMS, including
a query plan. The latter is a sequence of operations to be performed on such matters as query processing, transaction processing and organizing
the data. Often the operations in a query plan are implementations of storage for efficient access?

} 1. The query compiler, which translates the query into an internal form called 3
|

16 . . CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

How Indexes Are Implemented

The reader may have learned in a course on data structures that a hash
table is a very efficient way to build an index. Early DBMS’s did use
hash tables extensively. Today, the most common data structure is called
a B-tree; the “B” stands for “balanced.” A B-tree is a generalization of
a balanced binary search tree. However, while each node of a binary tree
has up to two children, the B-tree nodes have a large number of children.
Given that B-trees normally reside on disk rather than in main memory,
the B-tree is designed so that each node occupies a full disk block. Since
typical systems use disk blocks on the order of 2!2 bytes (4096 bytes),
there can be hundreds of pointers to children in a single block of a B-tree.
Thus, search of a B-tree rarely involves more than a few levels.

The true cost of disk operations generally is proportional to the num-
ber of disk blocks accessed. Thus, searches of a B-tree, which typically
examine only a few disk blocks, are much more efficient than would be a
binary-tree search, which typically visits nodes found on many different
disk blocks. This distinction, between B-trees and binary search trees, is
but one of many examples where the most appropriate data structure for
data stored on disk is different from the data structures used for algorithms
that run in main memory.

1.3.1 Database Design

Chapter 2 begins with a high-level notation for expressing database designs,
called the entity-relationship model. We introduce in Chapter 3 the relational
model, which is the model used by the most widely adopted DBMS’s, and which
we touched upon briefly in Section 1.1.2. We show how to translate entity-
relationship designs into relational designs, or “relational database schemas.”
Later, in Section 6.6, we show how to render relational database schemas for-
mally in the data-definition portion of the SQL language.

Chapter 3 also introduces the reader to the notion of “dependencies,” which
are formally stated assumptions about relationships among tuples in a relation.
Dependencies allow us to improve relational database designs, through a process
known as “normalization” of relations.

In Chapter 4 we look at object-oriented approaches to database design.
There, we cover the language ODL, which allows one to describe databases in
a high-level, object-oriented fashion. We also look at ways in which object-
oriented design has been combined with relational modeling, to yield the so-
called “object-relational” model. Finally, Chapter 4 also introduces “semistruc-
tured data” as an especially flexible database model, and we see its modern
embodiment in the document language XML.

1.3. OUTLINE OF DATABASE-SYSTEM STUDIES 17

1.3.2 Database Programming

Chapters 5 through 10 cover database programming. We start in Chapter 5
with an abstract tréatment of queries in the relational model, introducing the
family of operators on relations that form “relational algebra.”

Chapters 6 through 8 are devoted to SQL programming. As we mentione@,
SQL is the dominant query language of the day. Chapter 6 introduc&.zs basic
ideas regarding queries in SQL and the expression of database schemas in SQL.
Chapter 7 covers aspects of SQL concerning constraints and triggers on the
data.

Chapter 8 covers certain advanced aspects of SQL programming. First,
while the simplest model of SQL programming is a stand-alone, generic query
interface, in practice most SQL programming is embedded in a larger program
that is written in a conventional language, such as C. In Chapter 8 we learn
how to connect SQL statements with a surrounding program and to pass data
from the database to the program’s variables and vice versa. This chapter also

covers how one uses SQL features that specify transactions, connect clients to -

servers, and authorize access to databases by nonowners.

In Chapter 9 we turn our attention to standards for object-oriented database
programming. Here, we consider two directions. The first, OQL (Ob.ject
Query Language), can be seen as an attempt to make C++, or other object-
oriented programming languages, compatible with the demands of high-level
database programming. The second, which is the object-oriented features re-
cently adopted in the SQL standard, can be viewed as an attempt to make
relational databases and SQL compatible with object-oriented programming.

Finally, in Chapter 10, we return to the study of abstract query languages
that we began in Chapter 5. Here, we study logic-based languages and see how
they have been used to extend the capabilities of modern SQL.

1.3.3 Database System Implementation

The third part of the book concerns how one can implement a DBMS. ’.I‘he
subject of database system implementation in turn can be divided roughly into
three parts:

1. Storage management: how secondary storage is used effectively to hold
" data and allow it to be accessed quickly.

2. Query processing: how queries expressed in a very high-level language
such as SQL can be executed efficiently.

3. Transaction management: how to support transactions with the ACID
properties discussed in Section 1.2.4.

Each of these topics is covered by several chapters of the book.

sisAjpuyy puv JuawaSvuv Al vivq uoyviodsuvi] 66S/Z1% I4D

6-€ 12pvay

18 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

Storage-Management Overview

Chapter 11 introduces the memory hierarchy. However, since secondary stor-
age, especially disk, is so central to the way a DBMS manages data, we examine
in the greatest detail the way data is stored and accessed on disk. The “block
model” for disk-based data is introduced; it influences the way almost every-
thing is done in a database system.

Chapter 12 relates the storage of data elements — relations, tuples, attrib-
ute-values, and their equivalents in other data models — to the requirements
of the block model of data. Then we look at the important data structures
that are used for the construction of indexes. Recall that an index is a data
structure that supports efficient access to data. Chapter 13 covers the important
one-dimensional index structures — indexed-sequential files, B-trees, and hash
tables. These indexes are commonly used in a DBMS to support queries in
which a value for an attribute is given and the tuples with that value are
desired. B-trees also are used for access to a relation sorted by a given attribute.
Chapter 14 discusses multidimensional indexes, which are data structures for
specialized applications such as geographic databases, where queries typically
ask for the contents of some region. These index structures can also support
complex SQL queries that limit the values of two or more attributes, and some
of these structures are beginning to appear in commercial DBMS’s.

Query-Processing Overview

Chapter 15 covers the basics of query execution. We learn a number of al-
gorithms for efficient implementation of the operations of relational algebra.
These algorithms are designed to be efficient when data is stored on disk and
are in some cases rather different from analogous main-memory algorithms.

In Chapter 16 we consider the architecture of the query compiler and opti-
mizer. We begin with the parsing of queries and their semantic checking. Next,
we consider the conversion of queries from SQL to relational algebra and the
selection of a logical query plan, that is, an algebraic expression that represents
the particular operations to be performed on data and the necessary constraints
regarding order of operations. Finally, we explore the selection of a physical
query plan, in which the particular order of operations and the algorithm used
to implement each operation have been specified.

Transaction-Processing Overview

In Chapter 17 we see how a DBMS supports durability of transactions. The
central idea is that a log of all changes to the database is made. Anything that
is in main-memory but not on disk can be lost in a crash (say, if the power
supply is interrupted). Therefore we have to be careful to move from buffer to
disk, in the proper order, both the database changes themselves and the log of
what changes were made. There are several log strategies available, but each
limits our freedom of action in some ways.

1.4. SUMMARY OF CHAPTER 1 19

Then, we take up the matter of concurrency control — assuring atomicity
and isolation — in Chapter 18. We view transactions as sequences of operations
that read or write database elements. The major topic of the chapter is how
to manage locks on database elements: the different types of locks that may
be used, and the ways that transactions may be allowed to acquire locks and
release their locks on elements. Also studied are a number of ways to assure
atomicity and isolation without using locks.

Chapter 19 concludes our study of transaction processing. We consider the
interaction between the requirements of logging, as discussed in Chapter 17, and
the requirements of concurrency that were discussed in Chapter 18. Handling
of deadlocks, another important function of the transaction manager, is covered
here as well. The extension of concurrency control to a distributed environment
is also considered in Chapter 19. Finally, we introduce the possibility that
transactions are “long,” taking hours or days rather than milliseconds. A long
transaction cannot lock data without causing chaos among other potential users
of that data, which forces us to rethink concurrency control for applications that
involve long transactions.

1.3.4 Information Integration Overview

Much of the recent evolution of database systems has been toward capabilities
that allow different data sources, which may be databases and/or information
resources that are not managed by a DBMS, to work together in a larger whole.
We introduced you to these issues briefly, in Section 1.1.7. Thus, in the‘ final
Chapter 20, we study important aspects of information integration. We d1sc1}ss
the principal modes of integration, including translated and integrated copies
of sources called a “data warehouse,” and virtual “views” of a collection of
sources, through what is called a “mediator.”

1.4 Summary of Chapter 1

4 Database Management Systems: A DBMS is characterized by the ability
to support efficient access to large amounts of data, which persists over
time. It is also characterized by support for powerful query languages and
for durable transactions that can execute concurrently in a manner that
appears atomic and independent of other transactions.

4+ Comparison With File Systems: Conventional file systems are inadequate
as database systems, because they fail to support efficient search, efficient
modifications to small pieces of data, complex queries, controlled buffering
of useful data in main memory, or atomic and independent execution of
transactions.

4 Relational Database Systems: Today, most database systems are based
on the relational model of data, which organizes information into tables.
SQL is the language most often used in these systems.

01-€ 49pvay

sisAjpuyy puv JuawaSvuv Al vivq uoyviodsuvi] 66S/Z1% T4

20 CHAPTER 1. THE WORLDS OF DATABASE SYSTEMS

+ Secondary and Tertiary Storage: Large databases are stored on secondary
storage devices, usually disks. The largest databases require tertiary stor-
age devices, which are several orders of magnitude more capacious than
disks, but also several orders of magnitude slower.

+ Client-Server Systems: Database management systems usually support a
client-server architecture, with major database components at the server
and the client used to interface with the user.

4+ Future Systems: Major trends in database systems include support for
very large “multimedia” objects such as videos or images and the integra-
tion of information from many separate information sources into a single
database.

4 Database Languages: There are languages or language components for
defining the structure of data (data-definition languages) and for querying
and modification of the data (data-manipulation languages).

+ Components of a DBMS: The major components of a database man-
agement system are the storage manager, the query processor, and the
transaction manager.

4+ The Storage Manager: This component is responsible for storing data,
metadata (information about the schema or structure of the data), indexes
(data structures to speed the access to data), and logs (records of changes
to the database). This material is kept on disk. An important storage-
management component is the buffer manager, which keeps portions of
the disk contents in main memory.

+ The Query Processor: This component parses queries, optimizes them by
selecting a query plan, and executes the plan on the stored data.

+ The Transaction Manager: This component is responsible for logging
database changes to support recovery after a system crashes. It also sup-
ports concurrent execution of transactions in a way that assures atomicity
(a transaction is performed either completely or not at all), and isolation
(transactions are executed as if there were no other concurrently executing
transactions).

1.5 References for Chapter 1

Today, on-line searchable bibliographies cover essentially all recent papers con-
cerning database systems. Thus, in this book, we shall not try to be exhaustive
in our citations, but rather shall mention only the papers of historical impor-
tance and major secondary sources or useful surveys. One searchable index

!r

1.5. REFERENCES FOR CHAPTER 1 21

of database research papers has been constructed by Michael Ley [5]. Alf-
Christian Achilles maintains a searchable directory of many indexes relevant to
the database field [1].

While many prototype implementations of database systems contributed to
the technology of the field, two of the most widely known are the System R
project at IBM Almaden Research Center [3] and the INGRES project at Berke-
ley [7]. Each was an early relational system and helped establish this type of
system as the dominant database technology. Many of the research papers that
shaped the database field are found in [6].

The 1998 “Asilomar report” [4] is the most recent in a series of reports on
database-system research and directions. It also has references to earlier reports

of this type.)
You can find more about the theory of database systems than is covered

here from [2], [8], and [9].
1. http://liinwww.ira.uka.de/bibliography/Database .

2. Abiteboul, S., R. Hull, and V. Vianu, Foundations of Databases, Addison-
Wesley, Reading, MA, 1995.

3. M. M. Astrahan et al.,, “System R: a relational approach to database
management,” ACM Trans. on Database Systems 1:2, pp. 97-137, 1976.

4. P. A. Bernstein et al., “The Asilomar report on database research,”
http://www.acm.org/sigmod/record/issues/9812/asilomar.html .

5. http://www.informatik.uni-trier.de/"ley/db/index.html . A mir-
ror site is found at http://www.acm.org/sigmod/dblp/db/index.html .

6. Stonebraker, M. and J. M. Hellerstein (eds.), Readings in Database Sys-
tems, Morgan-Kaufmann, San Francisco, 1998.

7. M. Stonebraker, E. Wong, P. Kreps, and G. Held, “The design and imple-
mentation of INGRES,” ACM Trans. on Database Systems 1:3, pp. 189-
222, 1976.

8. Ullman, J. D., Principles of Database and Knowledge-Base Systems, Vol-
ume I, Computer Science Press, New York, 1988.

9. Ullman, J. D., Principles of Database and Knowledge-Base Systems, Vol-
ume II, Computer Science Press, New York, 1989.

sisAjpuy puv JudaSvUvIN DIV UOHDILOASUDL], 66S/ZTH D

=
®
)
QU
1)
=
ks
~
~

Reader 3-12 CEE 412/599 Transportation Data Management and Analysis

