
Advanced SQL Functions
CEE412 / CET522

Transportation Data Management and Visualization

WINTER 2020

Announcement
Corrections
◦ Drop column from a table (Lecture 5 Slide 53)

2/14/20 CEE 412 / CET 522 2

ALTER TABLE person
DROP birthdate

ALTER TABLE person
DROP COLUMN birthdate

MySQL Version Oracle and SQL Server Versions

Outline

◦ Window functions

◦ Case statements

◦ Variables

◦ Loops

◦ Stored procedures

2/14/20 CEE 412 / CET 522 3

Window Functions
Window functions return a single value for each row based on some
operations on the query result.
◦ Allow more complex sorting and ordering of data including the elusive

quantile functions
◦ These are specific to SQL Server, this does not work the same on all platforms

Basic syntax:

2/14/20 CEE 412 / CET 522 4

SELECT ROW_NUMBER() OVER (PARTITION BY <attributes>
ORDER BY <attributes>) AS name

FROM relation

Ranking/aggregate function Window

Window Functions
Ranking functions supported in SQL Server:

Return the row number of the output set (e.g., {1, 2, 3, 4}).
Returns the rank of each row, with duplicates for a tie (e.g., {1, 2, 2, 4}).

Returns the rank without gaps (e.g., {1, 2, 2, 3}).
Distributes the rows into a specified number of groups.

Did you ever want to know how to:
◦ Rank rows based on some attribute value?
◦ Find the row corresponding to the max or min value of some attribute?
◦ Compute quantiles, rather than the simple aggregation functions?

2/14/20 CEE 412 / CET 522 5

ROW_NUMBER():
RANK():
DENSE_RANK():
NTILE():

Window Functions – Example

How to calculate grade for each road segment based on elevation of
consecutive points on the road?
◦ For each point, find the next point on the same road.
◦ Calculate the elevation difference, then divided by milepost difference.
◦ Repeat the process for each route separately

2/14/20 CEE 412 / CET 522 6

State Route Milepost Elevation
WA I-5 0 24.42
WA I-5 0.001853 24.29
WA I-5 0.003729 24.16
WA I-90 0 15.52
WA I-90 0.005632 15.48
WA I-90 0.011288 13.79

Elevation

Window Functions – Example
But for each point on the road, how to find the NEXT point?
◦ Without a window function, it can be quite difficult and inefficient.
◦ If A is the current point on the road, the next point B has the minimum

milepost among all points with higher milepost than A.

Solution without window function:

2/14/20 CEE 412 / CET 522 7

SELECT a.*, (b.Elevation-a.Elevation)/(b.Milepost-a.Milepost)/5280 AS Grade
FROM Elevation AS a LEFT JOIN Elevation AS b
ON a.Route = b.Route

AND b.Milepost = (SELECT MIN(c.Milepost)
FROM Elevation AS c

WHERE c.Route = a.Route
AND c.Milepost > a.Milepost)

Calculate grade

Subquery that finds
milepost of the next point

Window Functions – Example
Query result

The result is what I want. But is that a good solution?
◦ Inefficient and slow
◦ For each point, I need to look into the entire table to find the NEXT point.

2/14/20 CEE 412 / CET 522 8

State Route Milepost Elevation Grade
WA I-5 0 24.42 -0.01329
WA I-5 0.001853 24.29 -0.01312
WA I-5 0.003729 24.16 NULL
WA I-90 0 15.52 -0.00135
WA I-90 0.005632 15.48 -0.05659
WA I-90 0.011288 13.79 NULL

Window Functions – Example
Solution using the window function:
1. Create a new column that shows row numbers of the table, within each

road, the rows are ordered by milepost.

2/14/20 CEE 412 / CET 522 9

SELECT *, ROW_NUMBER() OVER (PARTITION BY Route
ORDER BY Milepost) AS PointOrder

INTO #Elev_Ordered
FROM Elevation

State Route Milepost Elevation PointOrder
WA I-5 0 24.42 1
WA I-5 0.001853 24.29 2
WA I-5 0.003729 24.16 3
WA I-90 0 15.52 1
WA I-90 0.005632 15.48 2
WA I-90 0.011288 13.79 3

Window Functions – Example
2. For each point, find the next point on the same road.
3. Calculate the elevation difference, then divided by milepost difference.

2/14/20 CEE 412 / CET 522 10

SELECT a.*, (b.Elevation-a.Elevation)/(b.Milepost-a.Milepost)/5280 AS Grade
FROM #Elev_Ordered AS a LEFT JOIN #Elev_Ordered AS b

ON a.Route = b.Route
AND b.PointOrder = a.PointOrder + 1

State Route Milepost Elevation Grade
WA I-5 0 24.42 -0.01329
WA I-5 0.001853 24.29 -0.01312
WA I-5 0.003729 24.16 NULL
WA I-90 0 15.52 -0.00135
WA I-90 0.005632 15.48 -0.05659
WA I-90 0.011288 13.79 NULL

B is the next point of A

Window Functions
Quantile function: NTILE(n)
◦ Equally divide the rows into n groups.
◦ E.g., NTILE(4) means quartiles, NTILE(5) means quintile, etc.
◦ This does not give you the value of the cut points, it just assigns each row to a

particular quantile group.
◦ For each row, NTILE(n) function will return the number of the group (1~n) to

which the row belongs

2/14/20 CEE 412 / CET 522 11

Window Functions – Example

Name Company OneYrPay FiveYrPay Shares Age Percentile
John H Hammergren McKesson 131.19 285.02 51.9 53 1
Ralph Lauren Ralph Lauren 66.65 204.06 5010.4 72 1
Michael D Fascitelli Vornado Realty 64.405 NULL 171.7 55 2
Richard D Kinder Kinder Morgan 60.94 60.94 8582.3 67 2
David M Cote Honeywell 55.79 96.11 21.5 59 3
George Paz Express Scripts 51.525 100.21 47.3 57 3
Jeffery H Boyd Priceline.com 50.185 90.3 128.2 55 4
… … … … … … …

2/14/20 CEE 412 / CET 522 12

SELECT *, NTILE(100) OVER (ORDER BY OneYrPay DESC) as Percentile
FROM CEOs

ORDER BY OneYrPay DESC

Create the income percentile for CEOs:

200 CEOs in total, two in each percentile group

Window Functions
Common functions that can be used over a window:
◦ Ranking functions: ROW_NUMBER(), RANK(), DENSE_RANK(), NTILE(n), etc.
◦ Aggregate function: AVG(), MIN(), MAX(), SUM(), COUNT(), etc.

When using aggregate functions over a window, ORDER BY is not
used in the window (as it does not make sense).

2/14/20 CEE 412 / CET 522 13

Case Statements
CASE statements in SQL are one way to return conditional values in a
query.
They can be slow compared to regular set-based operations, but can be
very useful in some situations. The basic form of a CASE statement is as
follows:

◦ To be interpreted as: when the column is <condition 1>, return <value 1>,
when the column is <condition 2>, then return <value 2>, …, else, return
<value x>.

2/14/20 CEE 412 / CET 522 14

SELECT CASE <column name>
WHEN <condition 1> THEN <value 1>
WHEN <condition 1> THEN <value 1>
...
ELSE <valune x>

END

Case Statements
Example:

2/14/20 CEE 412 / CET 522 15

Name Section
A CEE 412
B CET 522
C CET 522
D CEE 412
E CET 522
F CEE 412
… …

Students

SELECT Name, Section,
Case Section
WHEN 'CEE 412' THEN 50
WHEN ‘CET 522' THEN 60

END AS TotalPoints
FROM Students

Name Section TotalPoints
A CEE 412 50
B CET 522 60
C CET 522 60
D CEE 412 50
E CET 522 60
F CEE 412 50
… …

Variables in SQL
In SQL, a local variable is an object that can hold a single data value
of a specific type.

Syntax to declare a variable:

Or:

2/14/20 CEE 412 / CET 522 16

DECLARE @variable_name <data type>
SET @variable_name = <some value>

DECLARE @variable_name <data type> = <some value>

Variables in SQL – Example
Player (Name, Salary, Height, Weight, Team)

Question: find the name of the player with the highest salary.
◦ Solution using a subquery:

◦ Solution using a local variable:

2/14/20 CEE 412 / CET 522 17

SELECT name, salary
FROM player

WHERE salary = (SELECT MAX(salary) FROM player)

DECLARE @max_salary INT = (SELECT MAX(salary) FROM player)

SELECT name, salary
FROM player
WHERE salary = @max_salary name salary

Peyton Manning 15000000.00

Loops in SQL
There are several loop types in SQL, we will look at WHILE loops

SQL is not a regular programing language, most things that appear to
be solved by loops can in fact be solved using the SQL “set-based”
approach

Do not use a loop when a conventional query will do (slow and
resource intensive)

2/14/20 CEE 412 / CET 522 18

Loops in SQL – Example
Create a table with ten rows of random numbers.
1. Create an empty table and a counting variable:

2. Insert values into the table in a WHILE loop

2/14/20 CEE 412 / CET 522 19

CREATE TABLE #temp(ID INT, RandNum DECIMAL(5,4))
DECLARE @counter INT = 1

WHILE @counter <= 10
BEGIN

INSERT INTO #temp VALUES(@counter, RAND())
SET @counter = @counter + 1

END

Random number (0~1) generator

Loops with IF/BREAK
Stop the loop when the sum of random numbers exceeds 3

2/14/20 CEE 412 / CET 522 20

CREATE TABLE #temp(ID INT, RandNum DECIMAL(5,4))
DECLARE @counter INT = 1

WHILE @counter <= 10
BEGIN

INSERT INTO #temp VALUES(@counter, RAND())
SET @counter = @counter + 1
IF (SELECT SUM(RandNum) FROM #temp) > 3.0 BREAK
ELSE CONTINUE

END

Loop with IF/BREAK

2/14/20 CEE 412 / CET 522 21

Results from previous two queries:

ID RandNum
1 0.9953
2 0.8091
3 0.9167
4 0.2714
5 0.1149
6 0.9743
7 0.7772
8 0.8559
9 0.7972

10 0.4414

ID RandNum
1 0.2238
2 0.7479
3 0.4861
4 0.9626
5 0.5082
6 0.1083

VS.

Stored Procedures
A set of saved commands in SQL that can be simply executed at any
time and even input parameter values like a function.
Why?
◦ To minimize the amount of SQL code in a software application.
◦ To manage access and isolate the SQL logic from the programing logic.

Why Not?
◦ In current generation SQL Server, little (if any) performance benefits.
◦ Possibly more work to create and manage procedures in a separate interface.

Stored procedures are fantastic time saving tools for larger or more
complex SQL operations. For simple updates and inserts, just use
simple queries.

2/14/20 CEE 412 / CET 522 22

Stored Procedures – Example
Procedure that gives extra credit to students:

Execute the procedure:

2/14/20 CEE 412 / CET 522 23

CREATE PROCEDURE ExtraCredit
@student_name VARCHAR(10),
@extra_credit FLOAT

AS
UPDATE #student

SET Grade = Grade + @extra_credit
WHERE name = @student_name

RETURN(1)

EXEC ExtraCredit @student_name = 'Peter', @extra_credit = 5.0

Procedure name

Input parameters

Procedure commands

Return value (optional)

Index
When we query data from a table, how can we speed up the query?
◦ Write a good (simple and accurate) queries
◦ Build index for that table

An index contains keys built from one or more columns in the table
or view.

These keys are stored in a tree structure that enables SQL Server to
find the row or rows associated with the key values quickly and
efficiently.

2/14/20 CEE 412 / CET 522 24

How to create index?

Index

2/14/20 CEE 412 / CET 522 25

LicenseNO Make YearMade OwnerSSN Type

123ABC Ford 1990 123-44-5678 Sedan

234BCD GM 2005 111-22-3333 SUV

345CDE Toyota 2003 222-33-4444 Sedan

456DEF Toyota 2004 222-33-4444 Pickup

567XYZ BMW 1980 120-33-4567 Sedan

CREATE INDEX idx_YearMade
ON Cars (YearMade)

DROP INDEX Cars.idx_YearMade

CREATE INDEX index_name
ON table_name (column1, column2, ...)

DROP INDEX table_name.index_name

Create an index on the YearMade column?

Index
Create an Index in SQL Server?

Clustered index?
Non-clustered index?

2/14/20 CEE 412 / CET 522 26

Index
Clustered
◦ Clustered indexes sort and store the data rows in the table or view based on

their key values. These are the columns included in the index definition.
There can be only one clustered index per table, because the data rows
themselves can be stored in only one order.

Non-clustered
◦ Non-clustered indexes have a structure separate from the data rows. A non-

clustered index contains the non-clustered index key values and each key
value entry has a pointer to the data row that contains the key value.

2/14/20 CEE 412 / CET 522 27

Index
Will the index always speed up Queries?

No…

An index helps to speed up SELECT queries and WHERE clauses,
but it slows down data input with the UPDATE and
the INSERT statements.

Indexes can be created or dropped with no effect on the data.

2/14/20 CEE 412 / CET 522 28

Other Databases and Tools for
Transportation Data Management

2/14/20 CEE 412 / CET 522 29

Transportation data
Normally Transportation Data is spatial-temporal data
◦ Loop detector (sensor-based) data
◦ Incident data

In real work, how do we store spatial temporal data?
◦ Take loop detector data as an example:

2/14/20 CEE 412 / CET 522 30

stamp loopid speed volume occupancy goodfrac
1/1/15 0:05 1 65.08282 0 0 1
1/1/15 0:10 1 65.08282 0 0 1
1/1/15 0:15 1 64.31717 0 0 1
1/1/15 0:20 1 64.06195 1 0.000947 1
1/1/15 0:25 1 65.08282 0 0 1
1/1/15 0:30 1 65.08282 0 0 1

◦ Weather data
◦ Traffic counts

Transportation data

2/14/20 CEE 412 / CET 522 31

How can we link those spatial-temporal data with the specific sensors?
◦ Store sensor’s information in another table (Loop detector’s cabinet table)

The geolocation of sensors can be stored by two columns, i.e. latitude and
longitude.

What if a data set measure the traffic states of road segments?

CabName UnitType ID Lat Lon Route Milepost direction UnitName

002es00068 main 1 47.97841 -122.177 2 0.68 E 002es00068
:_ME___1

002es00068 main 2 47.97841 -122.177 2 0.68 E 002es00068
:_ME___2

002es00068 main 3 47.97841 -122.177 2 0.68 E 002es00068
:_ME___3

002es00068 speed 19548 47.97841 -122.177 2 0.68 E 002es00068
:_ME__S1

Transportation data

2/14/20 CEE 412 / CET 522 32

Let’s see INRIX data How can we store road
segment’s geolocation
information?

Can we do it in a similar
way?

Yes…

Example
◦ IRNIX TMC Table (TMC: Traffic Message Channel)

What if the road segments are not straight lines, but curved lines?

Transportation data

2/14/20 CEE 412 / CET 522 33

TMC State County Road No. Direction StartLat StartLong EndLat EndLong Miles

101-06899 GA FULTON US-29 S 33.55658 -84.5932 33.54987 -84.6037 0.762831

101-06917 GA COBB W 33.96469 -84.4998 33.96218 -84.5173 1.116469

101-06918 GA COBB N 33.94558 -84.4987 33.9572 -84.4965 0.81509

101-06921 GA COBB W 33.92285 -84.4921 33.92279 -84.5039 0.682235

101-06928 GA FLOYD US-411 S 34.15415 -85.2703 34.10673 -85.352 6.067722

Transportation data
We need more powerful datatypes to store those curved lines.

Another database, PostgreSQL, can help us.

PostgreSQL
◦ A powerful, open source object-relational database system
◦ Long history
◦ Well documented
◦ Comprehensive data types
◦ Powerful extensions
◦ Open source

2/14/20 CEE 412 / CET 522 34

PostgreSQL
SQL Server à MS SQL Server Management Studio
PostgreSQL à pgAdmin

PostgreSQL has a lot of features.
◦ User-defined types.
◦ Table inheritance.
◦ Sophisticated locking mechanism.
◦ Foreign key referential integrity.
◦ Views, rules, subquery.
◦ Nested transactions (savepoints)
◦ Multi-version concurrency control (MVCC)
◦ Asynchronous replication.

But Let’s come back to our problem: store curved lines?

2/14/20 CEE 412 / CET 522 35

PostgreSQL
PostgreSQL support geospatial or GIS data.
◦ Geospatial data is represented by vectors, stored in files usually called

shapefile.
◦ A bunch of connected vectors/segments à the curved road segments

Example: (INRIX road geometric data table)

2/14/20 CEE 412 / CET 522 36

objectid shape link_id st_name feat_id dir_travel iso_code shape_leng source target

1

0105000020E610000
00100000001020000
00020000004C9B17C
FA0955EC098D8CE36
37CE4740A8A7CDE49
B955EC0581353793B
CE4740

19382442 PINE ST 7.41E+
08 T USA 0.000327 1 2

2

0105000020E610000
00100000001020000
00020000000043209
8A38B5EC000BED1A9
2B0F484074A79C11A
58B5EC02007BE8234
0F4840

21016083
SMOKEY
POINT
BLVD

7.17E+
08 B USA 0.000285 3 4

The starting and ending points of a
straight/curved line

2/14/20 CEE 412 / CET 522 37

TMC Link ID

TMC_1 Link_1

TMC_2 Link_2

Link ID Shape

Link_1 Code_1

Link_2 Code_2

Link ID Shape source target

Link_1 Code_1 1 2

Link_2 Code_2 2 3

Routable Roads

Geospatial Info

Big picture of transportation data
(INRIX data) storage in PostgreSQL
◦ (Spatial, Temporal) à Traffic data
◦ Spatial à Road link id
◦ Road link id à shape (geospatial info)
◦ Shape of road can be routable

How to make the roads stored in
PostgreSQL be routable?

PotsGIS and pgRouting
◦ https://postgis.net/
◦ https://pgrouting.org/

PostgreSQL
Spatial
(TMC)

Temporal Traffic Data

TMC_1 Time_1 State_1

TMC_2 Time_1 State_2

(optional)

https://postgis.net/
https://pgrouting.org/

PostGIS

2/14/20 CEE 412 / CET 522 38

PostGIS is a spatial database extender for PostgreSQL
◦ Support many GIS functionalities as like finding nearest neighbor, distance

calculation from one point to another.
◦ Example:

◦ geom: geometry can be a point, a line, a polygon, a polygon with a hole, or a collection.
◦ ST_Contains(A, B):Geometry A contains Geometry B

◦ Important to transportation data management
◦ Calculating the distance between an incident and a sensor
◦ Separating roadway into small segments

SELECT superhero.name
FROM city, superhero
WHERE ST_Contains(city.geom, superhero.geom)
AND city.name = 'Gotham';

pgRouting
pgRouting extends the PostGIS / PostgreSQL to provide geospatial
routing functionality.

◦ Example (you can find more in pgRouting document: http://docs.pgrouting.org/)

◦ Important to transportation data management
◦ Calculating average travel time of the shortest path from Point A to Point B

2/14/20 CEE 412 / CET 522 39

starting and ending points
Sequence of
Shortest Path

http://docs.pgrouting.org/

Transportation Data Management
Example: SHRP2 Reliability Data Analysis and Tools
One of the task: Combining Loop detector data and HERE (like INRIX)
data by conducting map conflation

2/14/20 CEE 412 / CET 522 40

Loop Detector Road Layer
HERE Road Layer

Transportation Data Management
How to fulfill this task?
1. Store road links in PostgreSQL;
2. Split roads into small segments;
3. Use PostGIS to calculate distance

and angles between segment in the
two datasets.

4. Match the nearest pairs

2/14/20 CEE 412 / CET 522 41

HERE Aggregated

TMC 1

TMC 2

Link A

Link B

Segment 1

Segment 2

Segment 3

Segment 4

Loop

TMC 3

Segments

(a) (b) (c)

Transportation Data Management
Spatial integration

◦ 10482 segments in loop detector data
◦ 28007 segments in HERE data
Ø3692 matched segments

2/14/20 CEE 412 / CET 522 42

Loop Detector Road Layer
HERE Road Layer
Combined/conflated Layer

Spatial temporal integration
◦ using relational database, just like join tables

based on spatial info and temporal info

QGIS

2/14/20 CEE 412 / CET 522 43

When you write PostgreSQL queries, you want to see how a curved
line looks like. How to do that?
QGIS… https://www.qgis.org/en/site/

QGIS is a free and open-source cross-platform desktop geographic
information system application that supports viewing, editing, and
analysis of geospatial data.

QGIS can easily connect to PostgreSQL to view/edit your geospatial
data.

https://www.qgis.org/en/site/

QGIS

2/14/20 CEE 412 / CET 522 44

: Combined Layer

: Here Layer
: Loop Detector Layer

Example:
◦ Visualization of the

conflated roadway
segment layers

◦ Editing geospatial data

Notes:
◦ QGIS is very helpful when

you use PostgreSQL or
PostGIS to process
geospatial data.

◦ You can easily find more
info/tutorials online.

NoSQL
NoSQL: non SQL or non relational
◦ The data structures used by NoSQL databases are different from those used

by default in relational databases, making some operations faster in NoSQL
◦ Key-value
◦ Wide column
◦ Graph
◦ Document

Sometimes, these data structures used by NoSQL databases are
more flexible than relational database tables

So many NoSQL databases are on available now… How to choose?

2/14/20 CEE 412 / CET 522 45

NoSQL

2/14/20 CEE 412 / CET 522 46

NoSQL
Transportation data management examples:
◦ Traffic real-time data à provided by API à key-value format à key-value

database
◦ Traffic network à graph à graph database

Whether use NoSQL or not depends on your tasks.
In most cases, transportation data process and management are
conducted at the same time or overlapped.

2/14/20 CEE 412 / CET 522 47

Data
ProcessManagement

Summary
Transportation Data Management
◦ DBMS
◦ DB Design
◦ E/R Diagram
◦ SQL
◦ SQL Server and other database/tools

Not covered in this class:
◦ Cloud computing
◦ Distributed data process frameworks, such as Spark

Next step
◦ Transportation Data Analysis

2/14/20 CEE 412 / CET 522 48

